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The synchrony and variability of the coupled Langevin model subjected to spatially correlated additive and
multiplicative noise are discussed. We have employed numerical simulations and the analytical augmented-
moment method, which is the second-order moment method for local and global variables �H. Hasegawa, Phys.
Rev. E 67, 041903 �2003��. It has been shown that the synchrony of an ensemble is increased �decreased� by
a positive �negative� spatial correlation in both additive and multiplicative noise. Although the variability for
local fluctuations is almost insensitive to spatial correlations, that for global fluctuations is increased �de-
creased� by positive �negative� correlations. When a pulse input is applied, the synchrony is increased for the
correlated multiplicative noise, whereas it may be decreased for correlated additive noise coexisting with
uncorrelated multiplicative noise. An application of our study to neuron ensembles has demonstrated the
possibility that information is conveyed by the variance and synchrony in input signals, which accounts for
some neuronal experiments.
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I. INTRODUCTION

It has been realized that the coupled Langevin model is a
valuable and useful model for a study of various phenomena
observed in stochastic ensembles �for a recent review, see
Ref. �1��. Independent �uncorrelated� additive and/or multi-
plicative noise has been widely adopted for theoretical analy-
ses because of its mathematical simplicity. In natural phe-
nomena, however, there exist some kinds of correlations in
noise, such as spatial and temporal correlations, and a corre-
lation between additive and multiplicative noise. In this pa-
per we will pay attention to the spatial correlation in noise.
The Langevin model has been usually discussed with the use
of the Fokker-Planck equation �FPE� for the probability dis-
tribution. In the case of correlated additive noise only, the
probability distribution is expressed by the multivariate
Gaussian probability with a covariance matrix. The effect of
correlated additive noise has been extensively studied in neu-
roscience, where it is an important and essential problem to
study the effect of correlations in noise and signals �for a
review, see Ref. �2��. It has been shown that the synchrony
and variability in neuron ensembles are much influenced by
the spatial correlations �3–16�. The spatial correlation in ad-
ditive noise enhances the synchrony of firings in a neuron
ensemble, while it works to diminish beneficial roles of in-
dependent noise, such as the stochastic and coherent reso-
nances and the population �pooling� effect �2,10,11,14�, re-
lated discussions being given in Sec. III.

The problem becomes much difficult when multiplicative
noise exists, for which the probability distribution generally
becomes a non-Gaussian. Although an analytical expression
of the stationary probability distribution for uncorrelated
multiplicative noise is available, that for correlated multipli-
cative noise has not been obtained yet. Indeed, only a small
amount of theoretical study of the effect of spatially corre-

lated multiplicative noise has been reported for subjects such
as the noise-induced phase separation �17� and the Fisher
information �18–20�, as far as the author is concerned.

In a recent paper �21�, we have studied stationary and
dynamical properties of the coupled Langevin model sub-
jected to uncorrelated additive and multiplicative noise. We
employed the augmented moment method �AMM�, which
was developed for a study of stochastic systems with finite
populations �22,23�. In the AMM, we consider global prop-
erties of ensembles, taking account of mean and fluctuations
�variances� of local and global variables. Although a calcu-
lation of the probability distribution for the spatially corre-
lated multiplicative noise with the use of the FPE is very
difficult as mentioned above, we may easily study its effects
by using the AMM. It is the purpose of the present paper to
apply the AMM to the coupled Langevin model including
spatially correlated multiplicative noise and to study its ef-
fects on the synchrony and variability.

The paper is organized as follows. In Sec. II, we discuss
the AMM for the spatially correlated Langevin model. With
the use of the analytical AMM and numerical methods, the
synchrony and variability of the coupled Langevin model are
investigated. In Sec. III, previous studies of the correlated
multiplicative noise using the Gaussian approximation
�18–20� are critically discussed. An application of our study
to neuron ensembles is also presented with model calcula-
tions. The final Sec. IV is devoted to our conclusion.

II. FORMULATION

A. Adopted model

We have assumed the N-unit coupled Langevin model
subjected to spatially correlated additive and multiplicative
noise. The dynamics of a variable xi �i=1–N� is given by

dxi

dt
= F�xi� + H�ui� + G�xi��i�t� + �i�t� , �1�
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ui�t� = �w

Z
� �

j��i�
xj�t� + Ii�t� , �2�

H�u� =
u

�u2 + 1
��u� . �3�

Here F�x� and G�x� are arbitrary functions of x, Z �=N−1�
denotes the coordination number, Ii�t� an input signal from
external sources, w the coupling strength, and ��u� the
Heaviside function: ��u�=1 for u�0 and ��u�=0 other-
wise. We have included additive and multiplicative noise by
�i�t� and �i�t�, respectively, expressing zero-mean Gaussian
white noise with correlations given by

	�i�t�� j�t��
 = �2��ij + cM�1 − �ij����t − t�� , �4�

	�i�t�� j�t��
 = �2��ij + cA�1 − �ij����t − t�� , �5�

	�i�t�� j�t��
 = 0, �6�

where the brackets 	·
 denote the average, � ��� expresses
the magnitude of multiplicative �additive� noise, and cM �cA�
stands for the degree of the spatial correlation in multiplica-
tive �additive� noise. Although our results to be present in the
following are valid for any choice of H�x�, we have adopted
a simple analytic expression given by Eq. �3� in this study.

We assume that external inputs have a variability defined
by

Ii�t� = I�t� + �Ii�t� , �7�

with

	�Ii�t�
 = 0, �8�

	�Ii�t��Ij�t��
 = 	I��ij + SI�1 − �ij����t − t�� , �9�

where 	I and SI denote the variance and degree of the spatial
correlation, respectively, in external signals. We will investi-
gate the response of the coupled Langevin model to corre-
lated external inputs given by Eqs. �7�–�9�.

B. Augmented moment method

In the AMM �22,23�, we define the three quantities of

�t�, 	�t�, and ��t� expressed by


�t� = 	X�t�
 =
1

N
�

i

	xi�t�
 , �10�

	�t� =
1

N
�

i

	�xi�t� − 
�t��2
 , �11�

��t� = 	�X�t� − 
�t��2
 , �12�

where X�t�= �1 /N��ixi�t�, 
�t� expresses the mean, and 	�t�
and ��t� denote fluctuations in local �xi� and global variables
�X�, respectively. By using the FPE, we obtain equations of
motion for 
�t�, 	�t� and ��t� which are given by �argument
t is suppressed, details being given in the Appendix A�

d


dt
= f0 + h0 + f2	 + ��2

2
��g0g1 + 3�g1g2 + g0g3�	� ,

�13�

d	

dt
= 2f1	 +

2h1w

Z
�N� − 	� + 2�g1

2 + 2g0g2��2	 + 	I + �2

+ �2g0
2, �14�

d�

dt
= 2f1� + 2h1w� + 2�g1

2 + 2g0g2��2� +
1

N
�	I + �2 + �2g0

2�

+
Z

N
�SI	I + cA�2 + cM�2g0

2� , �15�

where f�= �1 /�!����F�
� /�x��, g�= �1 /�!����G�
� /�x��, h�

= �1 /�!����H�u� /�u��, and u=w
+ I. Original N-dimensional
stochastic differential equations �DEs� given by Eqs. �1�–�3�
are transformed to the three-dimensional deterministic DEs
given by Eqs. �13�–�15�. For 	I=SI=cA=cM =0, equations of
motion given by Eqs. �13�–�15� reduce to those obtained in
our previous study �21�.

When we adopt F�x� and G�x� given by

F�x� = − �x , �16�

G�x� = x , �17�

Eqs. �13�–�15� become

d


dt
= − �
 + h0 +

�2


2
, �18�

d	

dt
= − 2�	 +

2h1wN

Z
�� −

	

N
� + 2�2	 + P , �19�

d�

dt
= − 2�� + 2h1w� + 2�2� +

�P + ZR�
N

, �20�

with

P = 	I + �2 + �2
2, �21�

R = SI	I + cA�2 + cM�2
2, �22�

where h0=H�w
+ I�, and P and R express uncorrelated and
correlated contributions, respectively. We employ Eqs.
�18�–�22� in the remainder of this paper.

C. Synchrony and variability

1. Synchrony

In order to quantitatively discuss the synchronization, we
first consider the quantity S��t� given by

S��t� =
1

N2�
ij

	�xi�t� − xj�t��2
 = 2�	�t� − ��t�� . �23�

When all neurons are in the same state, xi�t�=X�t� for all i
�the completely synchronous state�, we obtain S��t�=0 in Eq.
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�23�. On the contrary, in the asynchronous state where �
=	 /N, it is given by S��t�=2�1−1 /N�	�t��S0��t� �21,22�.
We may define the normalized ratio for the synchrony given
by �22,23�

S�t� � 1 −
S��t�
S0��t�

= �N

Z
�� ��t�

	�t�
−

1

N
� , �24�

which is 0 and 1 for completely asynchronous �S�=S0�� and
synchronous states �S�=0�, respectively.

2. Variability

The local variability is conventionally given by

CV�t� =
�	��xi�t��2



�t�
=

�	�t�

�t�

, �25�

where �xi�t�=xi�t�−
�t�. Similarly, the global variability is
defined by

DV�t� =
�	��X�t��2



�t�
=

���t�

�t�

= CV�t����t�
	�t�

, �26�

where �X�t�=X�t�−
�t�.

D. Stationary properties

The stationary solution of Eqs. �18�–�20� is given by


 =
h0

�� − �2/2�
, �27�

	 =
P

2�� − �2 + h1w/Z�
+

�h1w/Z��P + ZR�
2�� − �2 + h1w/Z��� − �2 − h1w�

,

�28�

� =
P + ZR

2N�� − �2 − h1w�
, �29�

where 
 in P and R of Eqs. �21� and �22� is given by Eq.
�27�. We note in Eq. �27� that 
 is increased as I is increased
with an enhancement factor of 1 / ��−�2 /2�. A local fluctua-
tion 	 is increased with increasing input fluctuations �	I�
and/or noise �� ,�� as Eq. �28� shows. In the limit of SI
=cA=cM =R=w=0.0, Eqs. �28� and �29� lead to � /	=1 /N,
which expresses the central-limit theorem. From Eqs. �24�,
�28�, and �29�, we obtain

S =
h1wP + Z�� − �2�R

P�Z�� − �2� − h1w�Z − 1�� + h1wZR
�30�

=
h1w

Z�� − �2� − h1w�Z − 1�
�for SI = cA = cM = 0� �31�

=
SI	I + cA�2 + cM�2
2

	I + �2 + �2
2 �for w = 0� , �32�

where P and R in Eq. �30� are given by Eqs. �21� and �22�,
respectively. Equation �30� shows that the synchrony S is

increased with increasing spatial correlations and/or cou-
pling. This is more clearly seen in the limit of no spatial
correlations �Eq. �31�� or no couplings �Eq. �32��. The local
and global variabilities CV and DV defined by Eqs. �25� and
�26�, respectively, are generally expressed in terms of P and
R, and they are given for w=0.0 by

CV =
1



�	I + �2 + �2
2

2�� − �2� �1/2

for w = 0, �33�

DV = CV� �1 + ZSI�	I + �1 + ZcA��2 + �1 + ZcM��2
2

N�	I + �2 + �2
2� �1/2

for w = 0. �34�

The local variability CV only weakly depends on the spatial
correlation through the coupling, and it is independent of the
correlation for w=0. In contrast, the global variability DV is
increased �decreased� for positive �negative� correlations. In
the limit of SI=cA=cM =w=0.0, Eq. �34� yields DV=CV /�N
expressing a smaller global variability in a larger-N ensemble
�the population or pooling effect� �2,10,11,14�.

The stability condition around the stationary state given
by Eqs. �27�–�29� may be examined from eigenvalues of the
Jacobian matrix of Eqs. �18�–�20�, which are given by

�1 = − � +
�2

2
+ h1w , �35�

�2 = − 2� + 2�2 −
2h1w

Z
, �36�

�3 = − 2� + 2�2 + 2h1w . �37�

The first eigenvalue of �1 arises from an equation of motion
for 
, which is decoupled from the rest of variables. The
stability condition for 
 is given by

h1w  �� − �2/2� . �38�

The stability condition for 	 and � is given by

− Z�� − �2�  h1w  �� − �2� . �39�

Then for �−�2h1w�−�2 /2, 	 and � are unstable, but 

remains stable.

It is note that there is a limitation in a parameter value of
c, as given by

−
1

Z
� �SI	I + cA�2 + cM�2
2

	I + �2 + �2
2 � � 1, �40�

which arises from the condition given by 0���	 �see Eqs.
�12� and �23��. When �=	I=0, for example, a physically
conceivable value of cM is given by −1 /Z�cM �1.

The cM dependence of the synchrony S is shown in Fig. 1
where �=0.1, �=0.1, cA=0.1, 	I=SI=0, and N=100. Equa-
tion �40� yields the condition that −0.44cM 1.0 with 

=0.5 for a given set of parameters. We note that the syn-
chrony is increased with increasing s and that the effect of
the correlated variability is more considerable for larger 

and w, as Eq. �30� shows.
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E. Dynamical properties

In order to study the dynamical properties of our model
given by Eqs. �1�–�3�, we have performed direct simulations
�DSs� by using the Heun method �24,25� with a time step of
0.0001: DS results are averages of 100 trials. AMM calcula-
tions have been performed for Eqs. �18�–�20� by using the
fourth-order Runge-Kutta method with a time step of 0.01.
We consider a set of typical parameters of �=1.0, �=0.1,
�=0.1, w=0.5, 	I=SI=0, and N=100. We apply a pulse in-
put given by

I�t� = A��t − 40���60 − t� + Ab, �41�

with A=0.4 and Ab=0.1, where ��x� denotes the Heaviside
function: ��x�=1 for x�0 and 0 otherwise.

Figures 2�a�–2�d� show time courses of 
�t�, 	�t�, S�t�,
and CV�t� for the correlated multiplicative noise �cA=0.0 and
cM =0.5�. 
�t� and S�t� are increased by an applied input at
40� t60 shown by the chain curve in Fig. 2�a�, by which
	�t� is slightly increased. The variability CV�t� is decreased
because of an increased 
�t�. The results of the AMM shown
by the solid curves are in fairly good agreement with those of
DSs shown by the dashed curves.

In contrast, Figs. 3�a�–3�d� show time courses of 
�t�,
	�t�, S�t�, and CV�t� for the correlated additive noise �cA
=0.1 and cM =0.0�. With an applied pulse input, 
�t� is in-

creased and 	�t� is a little increased, as in the case of Figs.
2�a� and 2�b�. However, the synchrony S�t� is decreased in
Fig. 3�c�, while it is increased in Fig. 2�c�. This difference
arises from the fact that a decrease in S�t� in the former case
is mainly due to an increase in P of the denominator of Eq.
�30�, while in the latter case, its increase arises from an in-
crease in R of the numerator of Eq. �30�. This point is more
easily realized for w=0, for which Eq. �32� yields

S =
cM�2
2

�2 + �2
2 �for cA = 0� �42�

=
cA�2

�2 + �2
2 �for cM = 0� . �43�

The situation is almost the same even for finite w, as Figs.
2�c� and 3�c� show. In both Figs. 2�d� and 3�d�, CV�t� is
decreased by an applied input because of an increased 
�t�.

III. DISCUSSION

A. Comparison with related studies

We have investigated the stationary and dynamical prop-
erties of the spatially correlated Langevin model given by
Eqs. �1�–�3�. In Ref. �26�, we discussed the Fisher informa-
tion in the Langevin model subjected to uncorrelated addi-
tive and multiplicative noise, which is a typical microscopic
model showing the nonextensive behavior �27�. It is interest-
ing to calculate the Fisher information of the Langevin
model with correlated multiplicative noise. Such a calcula-
tion needs to solve the FPE of the Langevin model given by
Eq. �A1� because the Fisher information is expressed in
terms of derivatives of the probability distribution. For addi-
tive noise only ��=cM =0�, the stationary probability distri-
bution p��xk� is expressed by the multivariate Gaussian dis-
tribution given by

p��xk� � exp�−
1

2�
ij

�xi − 
��Q−1�ij�xj − 
�� , �44�

with the covariance matrix Q expressed by
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FIG. 1. �Color online� cM dependence of the stationary syn-
chrony S for w=0.5 �solid curves� and w=0.0 �dashed curves� with
�=0.1, �=0.1, cA=0.1, 	I=SI=0, and N=100, 
 being treated as a
parameter.
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FIG. 2. �Color online� Time courses of �a� 
�t�, �b� 	�t�, �c� S�t�,
and �d� CV�t� with the correlated multiplicative noise �cA=0.0, cM

=0.5, �=0.1, �=0.1� for a pulse input given by Eq. �41� with A
=0.4 and Ab=0.1: the solid and dotted curves express results of the
AMM and DS, respectively: the chain curve in �a� expresses an
input of I�t� ��=1.0, SI=	I=0.0, and N=100�.
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FIG. 3. �Color online� Time courses of �a� 
�t�, �b� 	�t�, �c� S�t�,
and �d� CV�t� with the correlated additive noise �cA=0.1, cM =0.0,
�=0.1, �=0.1� for a pulse input given by Eq. �41� with A=0.4 and
Ab=0.1: the solid and dashed curves denote results of the AMM and
DSs, respectively: the chain curve in �a� expresses an input of I�t�
��=1.0, SI=	I=0.0, and N=100�.
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Qij = �2��ij + cA�1 − �ij�� , �45�

where 
=H /� and �2=�2 /2�. From Eqs. �44� and �45�, we
obtain the Fisher information given by �18�

g =
N

�2�1 + �N − 1�cA�
. �46�

When multiplicative noise exists, a calculation of even
stationary distribution becomes difficult, and it is generally
not given by the Gaussian. The stationary distribution for
uncorrelated additive and multiplicative noise �G�x�=x, cA
=cM =	I=0.0� is given by �21,26,28,29�

p��xk� � �
i

��2 + �2xi
2�−��2/�+1/2�e�2H/���tan−1��xi/��.

�47�

In the limit of �=0.0 and ��0.0 �i.e., uncorrelated additive
noise only�, Eq. �47� becomes the Gaussian distribution
given by

p��xk� � �
i

e−��/�2��xi − 
�2
. �48�

In the opposite limit of ��0.0, �=0.0, and H�0 �i.e., un-
correlated multiplicative noise only�, Eq. �47� reduces to

p��xk� � �
i

xi
−�2�2/�+1�e−2H/�2xi��xi� , �49�

yielding the Fisher information given by

g =
Nq4

�q
2 =

2N�q4

�2
2 , �50�

where q= �2�+3�2� / �2�+�2� and �q
2=�2
2 /2� �26�.

Unfortunately, we have not succeeded in obtaining the
analytic expression for the stationary distribution of the
Langevin model including correlated multiplicative noise. In
some previous studies �18–20�, the stationary distribution for
correlated multiplicative noise only �G�x�=x, cA=�=0.0,
and H=
� is assumed to be expressed by the Gaussian dis-
tribution given by Eq. �44� with the covariance matrix given
by

Qij = �M
2 
i
 j��ij + cM�1 − �ij�� , �51�

where 
i �=	xi
� denotes the average of xi and �M
2 a variance

due to multiplicative noise. This is equivalent to assume that
the multiplicative-noise term in the FPE given by Eq. �A1� is
approximated as

�2

2 �
i

�
j

��ij + cM�1 − �ij��
�

�xi
xi

�

�xj
xjp��xk�

�
�2

2 �
i

�
j

��ij + cM�1 − �ij��
�

�xi
	xi


�

�xj
	xj
p��xk�

=
�2

2 �
j

�
i


i
 j��ij + cM�1 − �ij��
�

�xi

�

�xj
p��xk� . �52�

If we adopt the Gaussian approximation given by Eq. �52�,
with which multiplicative noise may be treated in the same

way as additive noise, we obtain the AMM equations given
by Eqs. �18�–�20�, but without the third term of �2
 /2 in Eq.
�18�.

By using the Gaussian approximation given by Eq. �51�,
Abbott and Dayan �AD� �18� obtained the Fisher information
expressed by �Eq. 4.7 of Ref. �18��

gAD =
NK

�M
2 �1 + �N − 1�cM�

+ 2NK �53�

=
1

�M
2 
2cM

+
2N


2 �for N → �� �54�

=
N

�M
2 
2 +

2N


2 �for cM = 0� , �55�

with K=N−1�i�d ln H�
i� /d
i�2=1 /
2. Equation �55� is not
in agreement with the exact expression given by Eq. �50� for
uncorrelated multiplicative noise only.

Instead of using the Langevin model, we may alterna-
tively calculate the Fisher information of a spatially corre-
lated nonextensive system by using the maximum-entropy
method. In our recent paper �30�, we have obtained the ana-
lytic, stationary probability distribution which maximizes the
Tsallis entropy �27� under the constraints for a given set of
the variance ��2� and covariance �c�2�. The Fisher informa-
tion is expressed by �30�

g =
N

�2�1 + �N − 1�c�
�56�

=
1

c�2 �for N → �� �57�

=
N

�2 �for c = 0.0� . �58�

The Fisher information given by Eq. �56� is increased �de-
creased� by a negative �positive� correlation. This implies
from the Cramér-Rao theorem that an unbiased estimate of
fluctuations is improved by a negative spatial correlation, by
which the synchrony is decreased as shown by Eqs. �30� and
�32�. The N and c dependences of the Fisher information
given by Eq. �56� are different from those of gAD given by
Eq. �53�, although they are the same as those for additive
noise only �Eq. �46��. It is noted that the Gaussian approxi-
mation given by Eq. �51� or �52� assumes the Gaussian dis-
tribution, although multiplicative noise generally yields the
non-Gaussian distribution as shown by Eqs. �47� and �49�.
The spurious second term �2NK� in Eq. �53�, which is inde-
pendent of cM and �M

2 , arises from an inappropriate Gaussian
approximation. In discussing the Fisher information of spa-
tially correlated nonextensive systems, we must take into ac-
count the detailed structure of the non-Gaussian distribution.

B. Application to neuronal ensembles

When 	I and SI in Eq. �9� are allowed to be time depen-
dent, they may carry input information. This is easily real-
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ized if the AMM equations given by Eqs. �18�–�20� are ex-
plicitly expressed in terms of 
, 	, and S as

d


dt
= − �
 + h0 +

�2


2
, �59�

d	

dt
= − 2�	 + 2h1w	S + 2�2	 + 	I�t� + �2
2 + �2,

�60�

dS

dt
= −

S

	
�	I�t� + �2
2 + �2� +

1

	
�	I�t�SI�t� + cM�2
2 + cA�2�

+ �2h1w

Z
��1 + ZS��1 − S� , �61�

which are derived with the use of Eq. �24�.
In order to numerically examine the possibility that input

information is conveyed by 	I�t� and SI�t�, we first apply a
fluctuation-driven input given by

	I�t� = B��t − 40���60 − t� + Bb, �62�

with B=0.4, Bb=0.1, I�t�=0.1, and SI�t�=0.1 for �=1.0, cA
=0.0, cM =0.5, �=0.1, �=0.1, and N=100. Time courses of

�t�, 	�t�, S�t�, and CV�t� are shown in Figs. 4�a�–4�d�: the
chain curves in Figs. 4�a� and 4�b� express I�t� and 	I�t�,
respectively. When the magnitude of 	I�t� is increased at
40� t60, 	�t� and CV�t� are much increased, while there is
no changes in 
�t� because it is decoupled from the rest of
variables in Eq. �18�. S�t� is slightly modified only at t�40
and t�60 where the 	I�t� is on and off.

Next we apply a synchrony-driven input SI�t� given by

SI�t� = C��t − 40���60 − t� + Cb, �63�

with C=0.4, Cb=0.1, I�I�=0.1, and 	I�t�=0.1. Figures
5�a�–5�d� show time courses of 
�t�, 	�t�, S�t�, and CV�t�:
the chain curves in Figs. 5�a� and 5�c� express I�t� and SI�t�,
respectively. An increase in synchrony-driven input at 40
� t60 induces a significant increase in S�t� and slight in-
creases in 	�t� and CV�t�, but no changes in 
�t�.

When we regard a variable xi in the Langevin model
given by Eqs. �1�–�3� as the firing rate ri ��0� of a neuron i
in a neuron ensemble, our model expresses the neuronal
model proposed in Refs. �31,32�. It belongs to the firing-rate
�rate-code� models such as the Wilson-Cowan �33� and
Hopfield models �34�, in which a neuron is regarded as a
transducer from input rate signals to output rate ones. Alter-
native neuronal models are spiking-neuron �temporal-code�
models such as the Hodgkin-Huxley �35�, FitzHugh-Nagumo
�36,37�, and integrate-and-fire �IF� models �38�. Various at-
tempts have been proposed to obtain the firing-rate model,
starting from spiking-neuron models �39–43�. It is difficult to
analytically calculate the firing rate based on spiking-neuron
models, except for the IF-type model �38�. It has been shown
with the use of the IF model that information transmission is
possible by noise-coded signals �44,45� and that the modu-
lation of the synchrony is possible without a change in firing
rate �46�. Model calculations shown in Figs. 4 and 5 have
demonstrated the possibility that information may be con-
veyed by 	I�t� and SI�t�, which is partly supported by results
of the IF model �44–46�. Some relevant results have been
reported in neuronal experiments �47–52�. In motor tasks of
monkey, firing rate and synchrony are considered to encode
behavioral events and cognitive events, respectively �47�.
During visual tasks, rate and synchrony are suggested to en-
code task-related signals and expectation, respectively �48�.
A change in synchrony may amplify behaviorally relevant
signals in V4 of monkeys �49�. The synchrony is modified
without a change in firing rate in some experiments
�47,49,51�. The synchrony-dependent firing-rate signal is
shown to propagate in iteratively constructed networks in
vitro �50�.

IV. CONCLUSION

With the use of DSs and the AMM �22,23�, the effects of
spatially correlated additive and multiplicative noise have
been discussed on the synchrony and variability in the
coupled Langevin model. Our calculations have shown the
following: �i� the synchrony is increased �decreased� by the
positive �negative� correlation in additive and multiplicative
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FIG. 4. �Color online� Time courses of �a� 
�t�, �b� 	�t�, �c� S�t�,
and �d� CV�t� for a fluctuation-driven input of 	I�t� given by Eq.
�62� with SI=0.1, B=0.4, and Bb=0.1: the solid and dotted curves
express results of the AMM and DS, respectively: the chain curves
in �a� and �b� express inputs of I�t� and 	I�t�, respectively ��=1.0,
cA=0.0, cM =0.5, �=0.1, �=0.1, N=100�.
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FIG. 5. �Color online� Time courses of �a� 
�t�, �b� 	�t�, �c� S�t�,
and �d� CV�t� for a synchrony-driven input of SI�t� given by Eq. �63�
with 	I=0.1, C=0.4, and Cb=0.1: the solid and dotted curves ex-
press results of the AMM and DS, respectively: the chain curves in
�a� and �c� express inputs of I�t� and SI�t�, respectively ��=1.0,
cA=0.0, cM =0.5, �=0.1, �=0.1, N=100�.
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noise �Eq. �30��, �ii� although an applied pulse input works to
increase the synchrony for correlated multiplicative noise, it
is possible to decrease the synchrony when correlated addi-
tive noise coexists with uncorrelated multiplicative one, �iii�
the local variability CV is almost independent of spatial cor-
relations, while global variability DV is increased �decreased�
with increasing the positive �negative� correlation, and �iv�
information may be carried by variance and synchrony in
input signals. Item �iv� is consistent with the results of Refs.
�44–46� and elucidates some phenomena observed in neu-
ronal experiments �47–52�.

Although we have applied the AMM to the Langevin
model in this paper, it is possible to apply it to other types of
stochastic neuronal models such as the FitzHugh and
Hodgkin-Huxley models subjected to correlated additive and
multiplicative noise, which is left as our future study.
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APPENDIX: DERIVATION OF THE AMM EQUATIONS

The FPE for the Langevin equation given by Eqs. �1�–�3�
in the Stratonovich representation is expressed by �17,53�

�

�t
p��xk,t� = − �

i

�

�xi
��F�xi� + H�ui��p��xk,t�

+
	I

2 �
i

�
j

�2

�xi�xj
���ij + SI�1 − �ij��p��xk,t�

+
�2

2 �
i

�
j

�2

�xi�xj
���ij + cA�1 − �ij��p��xk,t�

+
�2

2 �
i

�
j

��ij + cM�1 − �ij��

�
�

�xi
�G�xi�

�

�xj
�G�xj�p��xk,t��� , �A1�

where ui= �w /Z�� j��i�xj + I and H��ui� is absorbed in a new
definition of 	I in its second term.

Equations of motion for moments 	xi
 and 	xixj
 are de-
rived with the use of the FPE �21�:

d	xi

dt

= 	F�xi� + H�ui�
 +
�2

2
	G��xi�G�xi�
 , �A2�

d	xixj

dt

= 	xi�F�xj� + H�uj��
 + 	xj�F�xi� + H�ui��


+
�2

2
�	xiG��xj�G�xj�
 + 	xjG��xi�G�xi�
�

+ �ij�	I + �2 + �2	G�xi�2
� + �1 − �ij��SI	I + cA�2

+ cM�2	G�xi�G�xj�
� . �A3�

In the AMM �22,23�, the three quantities of 
, 	, and �
are defined by Eqs. �10�–�12�. We use the expansion given
by

xi = 
 + �xi �A4�

and the relations given by

d


dt
=

1

N
�

i

d	ri

dt

, �A5�

d	

dt
=

1

N
�

i

d	��ri�2

dt

, �A6�

d�

dt
=

1

N2�
i

�
j

d	�ri�rj

dt

. �A7�

For example, Eq. �A5� for d
 /dt is calculated as follows:

1

N
�

i

	F�ri�
 = f0 + f2	 , �A8�

1

N
�

i

	H�ui�
 = h0, �A9�

1

N
�

i

	G��ri�G�ri�
 = g0g1 + 3�g0g3 + g1g2�	 . �A10�

Equations �A6� and �A7� are calculated in a similar way.
Then, we have obtained equations of motion for 
�t�, 	�t�,
and ��t� given by Eqs. �13�–�15�.
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